

Fakultät für Elektrotechnik und Informationstechnik Lehrgruppe Grundlagen der Elektrotechnik

# Praktikum Grundlagen der Elektrotechnik

Versuch GET 10: Fourieranalyse

Standort: GET-Labore im Helmholtzbau H2546, H2548 und H2549

#### 1. Ziel und Inhalt

Verifizierung der Ergebnisse der klassischen Fourierreihenentwicklung periodischer Funktionen durch Vergleich mit den Spektren der FFT-Funktion eines Digitalspeicheroszilloskops.

Berechnung und Messung der Kenngrößen Mittelwert, Effektivwert und Klirrfaktor verschiedener Kurvenformen. Analyse von linearen und nichtlinearen Verzerrungen. Nicht Gegenstand der Untersuchung sind die Unterschiede zwischen klassischer Fourieranalyse und FFT.

### 2. Vorausgesetztes Wissen

- Prinzipieller Aufbau und Bedienung eines Oszillografen,
   d.h. Durchführung des Versuches GET2 "Digitalspeicheroszilloskop".
- Kennwerte periodischer Wechselgrößen, insb. Mittelwert, Effektivwert und Klirrfaktor.
- Rechnung mit relativen und absoluten Spannungspegeln in Dezibel.
- Berechnung der Koeffizienten der Fourierreihe und daraus die Koeffizienten (Amplituden und Phasenwinkel) der reellen Spektren.
- Lineare und nichtlineare Verzerrungen.

#### 3. Literatur zur Vorbereitung

- Vorlesungs- und Übungsunterlagen der Elektrotechnik 2.
- Lehrbuch Seidel/Wagner: Allgemeine Elektrotechnik Band 2, Unicopy Campus Edition, Ilmenau 2011.
- Lernprogramm "Fourier-Reihen" im "LearnWeb" von "GETsoft".

GET 10, 05. Oktober 2020 Seite 1 von 6

## 4. Vorbereitung

### 4.1 Fourierreihe und reelle Spektren

Geben Sie die allgemeine Darstellung der Fourierreihe als Überlagerung eines Gleichanteils mit Cosinus- und Sinusschwingungen sowie die Formeln zur Berechnung ihrer Koeffizienten  $a_0$ ,  $a_n$  und  $b_n$  an.

Geben Sie die allgemeine Darstellung der reellen Fourierreihe als Überlagerung eines Gleichanteils mit harmonischen Schwingungen der Form  $A_n \sin(n\omega_1 t + \varphi_n)$  und die Formeln zur Berechnung ihrer Koeffizienten  $A_0$ ,  $A_n$  und  $\varphi_n$  aus den  $a_0$ ,  $a_n$  und  $b_n$  an.

Geben Sie die Formeln für die Berechnung der Fourierkoeffizienten  $A_0$ ,  $A_n$  und  $\varphi_n$  der reellen Fourierreihe (Amplituden- und Phasenspektren) für die Funktionen nach **Bild 1a,b,c** an. Nutzen Sie dafür ihre Vorlesungs- und Übungsunterlagen.

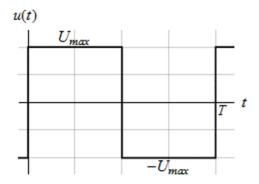



Bild 1. a) Rechteckfunktion

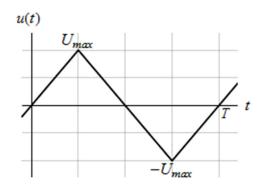



Bild 1. b) Dreieckfunktion

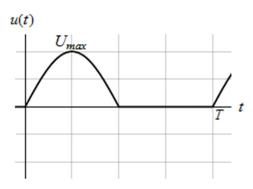



Bild 1. c) Halbwellensinus

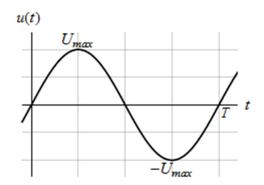



Bild 1. d) Sinusfunktion

#### 4.2 Klirrfaktor

Geben Sie die allgemeine Formel für die Berechnung des Klirrfaktors aus dem Amplitudenspektrum der reellen Fourierreihe an.

Berechnen Sie den Klirrfaktor der Dreiecksschwingung unter Zuhilfenahme des Grenzwertes:

$$\sum_{n} \frac{1}{n^4} = \frac{\pi^4}{96} , \qquad n = 1, 3, 5, 7, \dots \infty$$

GET 10, 05. Oktober 2020 Seite 2 von 6

### 4.3 Effektivwerte

Berechnen Sie für jede Funktion nach Bild 1 den genauen Effektivwert entsprechend der Definitionsgleichung für den Zeitbereich:

$$U_{\rm eff} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0 + T} u^2(t) dt$$

Leiten Sie die Formel für die Berechnung des Effektivwertes aus dem Amplitudenspektrum ab, indem Sie die mathematische Form der Fourierreihe

$$u(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\omega_1 t) + b_n \sin(n\omega_1 t))$$

in die Definitionsgleichung für den Effektivwert einsetzen, entsprechend den Orthogonalitätsregeln vereinfachen und dann die  $a_0$ ,  $a_n$  und  $b_n$  zu den Koeffizienten der reellen Fourierreihe  $A_0$  und  $A_n$  zusammenfassen.

### 4.4 Übertragungsfunktion des einfachen RC-Tiefpasses

Leiten Sie die Formel für den Betrag der Übertragungsfunktion des Tiefpasses nach Bild 4 her. Geben Sie die Formel zur Berechnung des Betrages der Übertragungsfunktion **in dB** an.

### 4.5 Messprotokoll und Auswertung

Bereiten Sie die Mess- und Auswertungstabellen für 6.1-6.8 vor.

#### 5. Geräte und Baugruppen am Versuchsplatz

- 1 Digitalspeicheroszilloskop TBS1102B
- 1 Funktionsgenerator HMF2550
- 1 LCR-Messgerät HM8018
- 1 Netztransformator S30A/G 220V/6V
- 1 Experimentiereinheit für Steckelemente
- 1 Steckelement Widerstand
- 1 Steckelement Kondensator
- 1 Steckelement Diode

#### 6. Messung und Auswertung

Um Messfehler zu minimieren, achten Sie darauf, dass im Zeitbereich eine ganze Anzahl von Schwingungen auf dem Bildschirm sichtbar ist.

Die Verläufe der Spannungen sollen den Bildschirm soweit wie möglich ausfüllen aber nicht übersteuern.

Für eine korrekte Transformation des Gleichanteils des Signals müssen sich die **Zeitachsen der beiden Kanäle** exakt **auf der Nulllinie** befinden. Die FFT-Funktion des Oszilloskops berechnet nur das Betragsspektrum der reellen Fourierreihe **in dB**, bezogen auf  $0dB (0dB \triangleq 1V_{eff})$ .

GET 10, 05. Oktober 2020 Seite 3 von 6

#### 6.1 Harmonische Schwingung

Oszillografieren Sie eine sinusförmige Generatorspannung von 1000Hz im Kanal 1.

Stellen Sie über die automatische Messfunktion des Oszillografen den Spitzenwert  $U_{\text{max}} = 4\text{V}$  ein. Notieren Sie den angezeigten Effektivwert  $U_{\text{eff}}$ . Messen Sie die Spektrallinie der Grundwelle  $A_1$  in dB. Berechnen Sie sowohl aus  $U_{\text{max}}$  als auch aus  $A_1$  den Effektivwert der Schwingung und vergleichen Sie diese mit dem angezeigten Wert  $U_{\text{eff}}$ .

#### 6.2 Netzspannung

Oszillografieren Sie die Spannung des Netztransformators S30A/G 220V/6V im Kanal 1. Bestimmen Sie die Spitzenspannung  $U_{\rm max}$ , den Effektivwert  $U_{\rm eff}$  und die Netzfrequenz  $f_{\rm N}$  über die Messfunktion des Oszillografen. Vergleichen Sie den angezeigten Effektivwert  $U_{\rm eff}$  mit dem aus der Spitzenspannung  $U_{\rm max}$  errechneten. Beurteilen Sie die Kurvenform der Netzspannung. Messen Sie die Spektrallinien  $A_{ndB}$  für n=1,3,5,7 und 9 in dB und ermitteln Sie daraus die reellen Fourier-Koeffizienten  $A_n$  (Amplitudenspektrum).

Berechnen Sie daraus näherungsweise den Klirrfaktor der Netzspannung.

### 6.3 Dreieckschwingung

Oszillografieren Sie eine **dreieck**förmige Generatorspannung von 1000Hz im Kanal 1. Stellen Sie über die automatische Messfunktion einen Spitzenwert der Spannung  $U_{\text{max}} = 4\text{V}$  ein und notieren Sie den angezeigten Effektivwert  $U_{\text{eff}}$ . Berechnen Sie aus der Spitzenspannung den Effektivwert und vergleichen Sie ihn mit dem angezeigten.

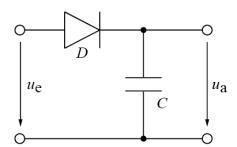
Messen Sie die Spektrallinien  $A_{ndB}$  für n = 1, 3, 5, 7 und 9 in dB und ermitteln Sie daraus die reellen Fourier-Koeffizienten  $A_n$  (Amplitudenspektrum). Berechnen Sie die theoretischen Werte der  $A_n$  - Koeffizienten und vergleichen sie mit den aus der Messung ermittelten.

Berechnen Sie aus den gemessenen  $A_n$  näherungsweise den Klirrfaktor der Dreieckschwingung und vergleichen ihn mit dem in der Vorbereitung errechneten Wert.

#### 6.4 Rechteckschwingung

Oszillografieren Sie eine **rechteck**förmige **symmetrische** Generatorspannung von 1000Hz im Kanal 1. Stellen Sie über die automatische Messfunktion eine Spitzenspannung  $U_{\text{max}} = 4\text{V}$  ein und notieren Sie den angezeigte Effektivwert  $U_{\text{eff}}$ . Berechnen Sie aus der Spitzenspannung den Effektivwert und vergleichen Sie ihn mit dem angezeigten.

Messen Sie die Spektrallinien  $A_{ndB}$  für n = 1, 3, 5, 7 und 9 aus und ermitteln Sie daraus die reellen Fourier-Koeffizienten  $A_n$  (Amplitudenspektrum). Berechnen Sie die theoretischen Werte der  $A_n$  – Koeffizienten und vergleichen diese mit den aus der Messung ermittelten.


GET 10, 05. Oktober 2020 Seite 4 von 6

#### 6.5 Gleichspannung

An den Eingang der Spitzenwertgleichrichtung nach Bild 2 legen Sie eine **sinus**förmige Generatorspannung  $u_e$  von 1000Hz und oszillografieren diese im Kanal 1.

Oszillografieren Sie im Kanal 2 die Ausgangsspannung des Vierpols – die Gleichspannung  $U_a$ . Stellen Sie dafür am Ausgang des Vierpols den Spitzenwert  $U_{\text{max}} = 4\text{V}$  ein. Notieren Sie den angezeigten Mittelwert  $U_{\text{mw}}$  und Effektivwert  $U_{\text{eff}}$ .

Messen Sie im Spektrum den Gleichanteil  $A_0$  und vergleichen Sie diesen mit Spitzen-, Mittelund Effektivwert.





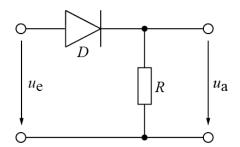



Bild 3. Einweggleichrichtung

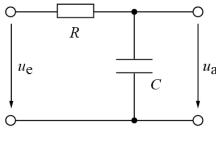
#### 6.6 Einweggleichrichtung eines Sinus (Halbwellensinus)

An den Eingang der Einweggleichrichtung nach Bild 3 legen Sie eine **sinus**förmige Generatorspannung  $u_e$  mit  $f_1 = 1000$ Hz an und oszillografieren diese im Kanal 1. Oszillografieren Sie die Ausgangsspannung  $u_a$  des Vierpols im Kanal 2.

Stellen Sie am Ausgang (Kanal 2) einen Spitzenwert der Halbwellenspannung von  $U_{\text{max}} = 8V$  ein. Notieren Sie den Effektivwert  $U_{\text{eff}}$  und den Mittelwert  $U_{\text{mw}}$  der Halbwellenspannung.

Messen Sie im Ausgangsspektrum die Spektrallinien  $A_{ndB}$  für n = 0, 1, 2, 4 und 6 in dB und ermitteln Sie daraus die reellen Fourier-Koeffizienten  $A_n$  (Amplitudenspektrum). Berechnen Sie die theoretischen Werte der  $A_n$  - Koeffizienten und vergleichen diese mit den aus der Messung ermittelten.

Vergleichen Sie den Mittelwert  $U_{\text{mw}}$  mit  $A_0$ .


Berechnen Sie näherungsweise den Effektivwert der Ausgangsspannung aus den durch Messung ermittelten  $A_n$  - Koeffizienten und vergleichen Sie ihn sowohl mit dem in der Vorbereitung errechneten genauen Effektivwert als auch mit dem hier im Zeitbereich gemessenen  $U_{\rm eff}$ .

GET 10, 05. Oktober 2020 Seite 5 von 6

### 6.7 Übertragungsfunktion Tiefpass

Bestimmen Sie die Werte der Bauelemente R und C mit dem LCR-Messgerät HM8018.

Bauen Sie den RC-Tiefpass nach Bild 4 auf. Legen Sie an den Eingang des Vierpols eine **sinus**förmige Generatorspannung  $u_e$  mit  $U_{max} = 5$ V und  $f_1 = 1000$ Hz an und oszillografieren Sie diese
im Kanal 1. Oszillografieren Sie im Kanal 2 die Ausgangsspannung  $u_a$  des Vierpols.



**Bild 4. Tiefpass** 

Ermitteln Sie aus den beiden zeitlichen Verläufen den Betrag der Übertragungsfunktion  $H_{ndB}$  in dB bei 1kHz, 3kHz, 5kHz, 7kHz und 9kHz, d.h. bei  $f = n \cdot f_1$  mit n = 1, 3, 5, 7 und 9.

Berechnen Sie  $H_{ndB}$  in dB bei den o.g. Frequenzen mit Hilfe der Formel aus 4.4. und vergleichen Sie diese mit den gemessenen Werten.

### 6.8 Lineare Verzerrungen: Rechteckspannung am Tiefpass

An den Eingang des RC-Tiefpass nach Bild 4 legen Sie eine symmetrische **rechteck**förmige Generatorspannung  $u_e$  mit  $U_{max} = 5$ V und  $f_1 = 1000$ Hz an und oszillografieren Sie diese im Kanal 1. Oszillografieren Sie im Kanal 2 die Ausgangsspannung  $u_a$  des Vierpols.

Skizzieren Sie das Oszillogramm. Beurteilen Sie die Kurvenform der Eingangsspannung.

Messen Sie die Spektrallinien der Eingangsspannung  $Ae_{ndB}$  und der Ausgangsspannung  $Aa_{ndB}$  in dB für n = 1, 3, 5, 7 und 9. Berechnen Sie daraus die Beträge der Übertragungsfunktion  $H_{ndB}$  in dB.

Vergleichen Sie die Ergebnisse aus 6.8 und 6.7.

GET 10, 05. Oktober 2020 Seite 6 von 6