

Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Fachgebiet Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik

1. Versuch

GET 5: Messbrücken

2. Standort

In unseren Laboren im Helmholtzbau H2546, H2547, H2548 und H2549.

3. Ziel und Inhalt

Kennenlernen der Funktionsweise, des Aufbaus und der Verwendungsmöglichkeiten von Messbrücken. Messtechnische Bestimmung der Elemente vereinfachter Ersatzschaltbilder von realen Bauelementen durch verschiedene Messverfahren.

4. Vorausgesetztes Wissen

- Grundlagen der Wechselstromtechnik (einschließlich Schaltungen mit gegenseitigen Induktivitäten)
- Grundschaltungen der im Versuch verwendeten Messbrücken
- Allgemeine Herleitung der komplexen Abgleichbedingung für Wechselstrombrücken
- Resonanzverhalten von Wechselstromschaltungen.

5. Literatur zur Vorbereitung

- Lernprogramm "Messbrücken" im LearnWeb unter http://getsoft.net
- Vorlesungsunterlagen Allgemeine Elektrotechnik
- Seidel/Wagner, Allgemeine Elektrotechnik, Carl Hanser Verlag München
- Lunze, Theorie der Wechselstromschaltungen, Verlag Technik Berlin

6. Vorbereitung

- 6.1. Leiten Sie die Abgleichbedingungen für die Messbrücken nach Bild 2, Bild 4 und Bild 5 ausgehend von der allgemeinen Abgleichbedingung einer Wechselstrommessbrücke her. Berechnen Sie dazu die Diagonalspannung \underline{U}_D einer allgemeinen Wechselstrombrücke mit den komplexen Widerständen \underline{Z}_1 bis \underline{Z}_4 (analog zu Bild 1, Quellenspannung \underline{U}_{Br}) und setzen Sie dann $\underline{U}_D = 0$ V.
- 6.2. Erläutern Sie, wie mit der Schaltung nach Bild 3 die Bestimmung der Gegeninduktivität auf eine Frequenzeinstellung der Eingangsspannung u_1 zurückgeführt werden kann. Hinweis: u_2 wird mit einem hochohmigen Voltmeter gemessen, sodass der Strom $i_2 = 0$ angenommen werden kann.

7. Geräte und Baugruppen am Versuchsplatz

- 1 Tongenerator GF 22
- 1 Gleichstrom-µ-Amperemeter mit Vorwiderstand als Nullindikator
- 1 Effektivwertmesser Röhrenvoltmeter QRV 2 als Nullindikator
- 1 Digitalmultimeter zur Frequenzmessung
- 1 Präzisions-Widerstandsdekade PWD Typ 1407 ($10 \times 100 \text{ k}\Omega$)
- 1 Präzisions-Widerstandsdekade PWD Typ 1406 ($10 \times 10 \text{ k}\Omega$)
- 1 Akkumulator (6 V)
- 1 Normalspule $L_{\rm N}$
- 1 Doppelspule mit L_1 und L_2
- 1 Normalkondensator 1,0 μF
- 1 Bauteil Messwiderstände
- 1 RC-Kombination (verlustbehafteter Kondensator)

8. Aufgabenstellung und Versuchsauswertung

8.1. Wheatstonsche Brücke

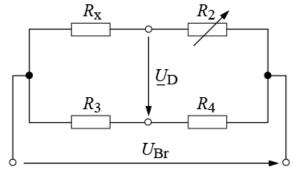


Bild 1. Wheatstonsche Brücke

Einstellungen:

 $R_3 = R_4 = 100 \Omega$, R_2 : PWD 1406, Akku als Spannungsquelle.

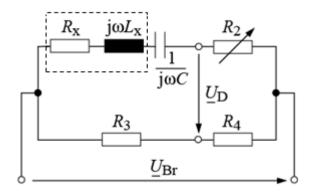
Für die Messung ist das Gleichstrom-µ-Amperemeter als Nullindikator zu verwenden. Beim Grobabgleich ist unbedingt der Vorwiderstand einzuschalten.

Bestimmen Sie die ohmschen Widerstände $R_{\rm LN}$ der Normalspule $L_{\rm N}$ und $R_{\rm L1}$ und $R_{\rm L2}$ der Einzelspulen $L_{\rm 1}$ und $L_{\rm 2}$ des Spulenpaares mit Hilfe der Wheatstonschen Brücke.

Hinweise zu 8.2 - 8.5

Tongenerator:

- Spannungsanzeige auf $U_{\text{GAnz}} = 3 \text{ V}$
- Zur genauen Frequenzmessung verwenden Sie ein Digitalmultimeter parallel zum Tongenerator.
- Es sind die Frequenzbereiche 20...200 Hz bzw. 0.2...2 kHz zu verwenden.

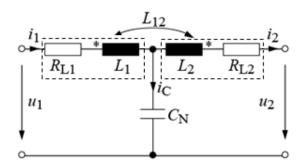

Röhrenvoltmeter:

- Vor jedem Abgleich Messbereich 3 V einstellen.
- Die Brücken gelten als abgeglichen, wenn bei einem Messbereich von 10 mV eine Anzeige <= 5 mV erreicht ist.
- als Nullindikator zu verwenden
- der Effektivwert der Spannung wird bei der Schalterstellung $u \sim zur$ Anzeige gebracht

Konvergenz:

 Die Hinweise zur Generatorfrequenz und zur Ausgangsstellung der variablen
Widerstände bei den Wechselstrommessbrücken zielen auf eine schnelle Konvergenz des Brückenabgleiches (vgl. die Erläuterungen im Lernprogramm "Messbrücken").

8.2. Resonanzmessbrücke

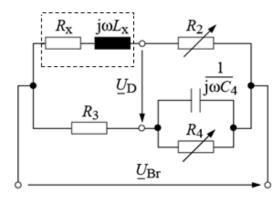

Einstellungen:

 $R_3 = R_4 = 100 \ \Omega$, R_2 : PWD 1406, $C = 1 \ \mu F$. Beginnen Sie den Abgleich mit $R_2 = R_L$ nach 8.1., dann wechselseitig mit f, bis das Abgleichminimum erreicht ist.

Bild 2. Resonanzmessbrücke

- 8.2.1. Bestimmen Sie mit der Resonanzmessbrücke über die Abgleichfrequenzen die Induktivitäten L_N , L_1 , L_2 und die Resonanzwiderstände der Schwingkreise.
- 8.2.2. Bestimmen Sie die gegenseitige Induktivität L_{12} des Spulenpaares über die Ermittlung von $L_{\rm ers1}$ bei gleichsinniger und $L_{\rm ers2}$ bei gegensinniger Reihenschaltung von L_{1} und L_{2} .

8.3. Resonanzverfahren

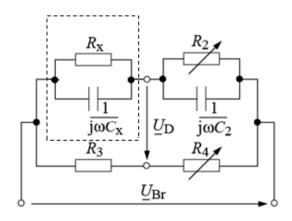


 $(C_N=1 \mu F)$

Bild 3. Bestimmung der Gegeninduktivität mittels Resonanzverfahrens

Mit Hilfe des Resonanzverfahrens ist die gegenseitige Induktivität L_{12} der Doppelspule zu bestimmen und mit dem Wert unter 8.2.2 zu vergleichen und Abweichungen zu diskutieren.

8.4. Maxwell-Wien-Brücke


Einstellungen:

 R_4 : PWD 1407, R_2 : PWD 1406, f = 100 Hz, $R_3 = 1$ k Ω , $C_4 = 1$ μ F. Zunächst $R_2 = 0$ Ω und $R_4 \rightarrow \infty$ einstellen. Abgleich mit R_2 beginnen, **wechselseitig** mit R_4 , bis Abgleichminimum erreicht ist.

Bild 4. Maxwell-Wien-Brücke

Die Induktivitäten L_1 und L_2 sowie Widerstandswerte R_{L1} und R_{L2} sind mit der Maxwell-Wien-Brücke zu bestimmen und mit den Werten unter 8.2.1 zu vergleichen und Abweichungen zu diskutieren.

8.5. Einfache Kondensatormessbrücke

Einstellung:

 R_4 : PWD 1406, R_2 : PWD 1407, $f=200~{\rm Hz}$, $R_3=1~{\rm k}\Omega$, $C_2=1~{\rm \mu F}$. Zunächst $R_4=0~\Omega$ und $R_2\to\infty$ einstellen; Abgleich mit R_4 beginnen, **wechselseitig** mit R_2 , bis Abgleichminimum erreicht ist.

Bild 5. Kondensatormessbrücke

Bestimmen Sie mit der einfachen Kondensatormessbrücke die Kapazität $C_{\rm x}$ und die Widerstandswerte des Parallelwiderstandes $R_{\rm x}$ für alle 5 Schalterstellungen.